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The commonly used linear K-Z and K-e models of turbulence are shown to be 
incapable of accurately predicting turbulent flows where the normal Reynolds 
stresses play an important role. By means of an asymptotic expansion, nonlinear K-Z 
and K-e models are obtained which, unlike all such previous nonlinear models, satisfy 
both realizability and the necessary invariance requirements. Calculations are 
presented which demonstrate that this nonlinear model is able to predict the normal 
Reynolds stresses in turbulent channel flow much more accurately than the linear 
model. Furthermore, the nonlinear model is shown to be capable of predicting 
turbulent secondary flows in non-circular ducts - a phenomenon which the linear 
models are fundamentally unable to describe. An additional application of this model 
to the improved prediction of separated flows is discussed briefly along with other 
possible avenues of future research. 

1. Introduction 
Despite the intensive research effort of the past decade to develop more general 

turbulence models, the linear K-Z and K-c models of turbulence still remain the most 
widely used approach by engineers and scientists for the solution of practical 
problems. The reason for this state of affairs becomes abundantly clear when one 
considers the disadvantages of the two major alternative approaches, namely 
second-order closure models and large-eddy simulations. For second-order closure 
models, the computational effort is more than doubled since transport equations must 
be solved for each individual component of the Reynolds stress tensor (cf. Launder, 
Reece & Rodi 1975; Mellor & Herring 1973; Lumley 1978). Furthermore, in order 
to obtain these transport equations for the Reynolds stresses, closure models for the 
higher-order turbulence correlations must be provided which have uncertain physical 
foundations. It is the opinion of many turbulence researchers that these deficiencies 
outweigh the main advantage of second-order closures, namely the incorporation of 
history-dependent non-local effects (through the convection and viscous diffusion 
of the Reynolds stresses) which are known to play an important role in determining 
the structure of many turbulent flows. Large-eddy simulations, by their nature, 
constitute three-dimensional time-dependent computations that require enormous 
computer time in comparison to the more traditional turbulent closure models. 
Furthermore, as a result of difficulties in modelling the turbulence in the vicinity of 
solid boundaries (cf. DeardoriT 1970; Moin t Kim 1982) and the problem of defiltering 
the results in complex geometries, this approach is still not suitable for the solution 
of many problems of technological importance. Since the linear K-e and K-Z models 
reduce to the mixing length theories for thin shear flows (in fact, these models can 
be thought of as tensorially invariant mixing length theories) they usually do quite 
well in the description of unseparated turbulent boundary layers which form a 
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cornerstone for many engineering problems. This result, along with the fact that the 
K-e and K-1 models can be incorporated into most Navier-Stokes computer codes 
in a relatively simple manner, constitute the main reasons for the continued 
popularity of this approach. 

It is well known that the linear K-1 and K-e models of turbulence can give rise 
to highly inaccurate predictions for the normal Reynolds stresses which make it 
impossible to describe such effects as secondary flows in non-circular ducts (see 
Launder & Ying 1971; Gessner & Emery 1976; Speziale 1982, 1984). Consequently, 
there have been previous research efforts to generalize these models to include 
nonlinear effects (see Lumley 1970; Launder & Ying 1971; Gessner & Emery 1976; 
Saffman 1977; Rodi 1982). However, these models were developed in a somewhat 
preliminary fashion and, as will be seen herein, do not exhibit the general invariance 
which is necessary if the broadest possible range of applicability is to be achieved. 
The purpose of the present paper is to develop, in a systematic manner, nonlinear 
K-1 and K-e models of turbulence which will broaden the range of validity of the 
more traditional models while maintaining most of their popular features (i.e. 
reduction to the mixing-length theories for thin shear flows and the ease of application 
in existing Navier-Stokes computer codes without substantially raising the level of 
computation). This will be accomplished by making an asymptotic expansion subject 
to the constraints of dimensional and tensorial invariance, realizability and material 
frame-indifference in the limit of two-dimensional turbulence which are a rigorous 
consequence of the Navier-Stokes equations. The resulting nonlinear model that will 
be obtained has a structure similar to that of a Rivlin-Ericksen fluid which is used 
in the description of the flows of dilute polymer solutions and, furthermore, 
constitutes a special case of the more complex nonlinear eddy viscosity model 
obtained by Yoshizawa (1984) using Kraichnan’s DIA formalism. It has long been 
known that there are striking similarities between the mean turbulent flow of a 
Newtonian fluid and the laminar flow of viscoelastic fluids, which motivated Rivlin 
(1957) and Lumley (1970) to suggest the use of viscoelastic models in turbulence. 

The nonlinear K-1 and K-e models that are obtained in this study will be shown 
to yield drastically improved predictions for the normal Reynolds stresses in 
turbulent channel flow and to yield normal-Reynolds-stress differences that give 
rise to secondary flows in non-circular ducts (preliminary computations for fully 
developed turbulent flow in a square duct will be presented). An additional 
application of this nonlinear model to the improved prediction of separated turbulent 
flows will also be discussed along with the prospects for future research. 

2. Linear K-1 and K-e models 
The mean turbulent flow of an incompressible and homogeneous viscous fluid will 

be considered for which the velocity field u and pressure field P can be decomposed 
into ensemble mean and fluctuating parts, respectively, as follows : 

u = B+u, P = P + p .  (1) 
The evolution of 8 and P in time are governed by the Reynolds equation and 
continuity equation which take form (cf. Hinze 1975) 

= -VVP+pF+pV2B+V*~,  (2) 

V*B = 0,  (3) 
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where 7 is the Reynolds stress tensor whose components are given by 
~ 

-7ij = - p i  uj, (4) 

p is the density of the fluid, p is the dynamic viscosity of the fluid, and Fis  the external 
body force per unit mass. Of course, it  is well known that as a result of the additional 
unknowns represented by 7 ,  the equations of motion (2)-(3) for the evolution of the 
mean turbulent fields are not closed. Closure is usually achieved by providing 
equations where the Reynolds stress tensor is tied to the global history of the mean 
velocity field. More specifically, it is assumed that 

7 ( X , t )  =7[V(x’ , t ’ ) ;x , t ] ,  X’ED, t ’ E ( - W , t ) ,  ( 5 )  

where the bracket denotes a functional (i.e. any quantity determined by a function) 
and D represents the fluid domain. 

In  the linear K-1 model of turbulence the Reynolds stress tensor is taken to be of 
the form 

(6) ~ t j  = - $I K8t.j + pKilDij, 

where (7) 

are, respectively, the turbulent kinetic energy per unit mass and the mean rate of 
strain tensor, while 1 denotes the lengthscale of turbulence. The turbulent kinetic 
energy is obtained from a modelled version of its transport equation, which can take 
the form (cf. Mellor & Herring 1973) 

DK 
Dt 
-= (9) 

where D/Dt = a/at+@*V and a1 and a2 are dimensionless constants. The lengthscale 
of turbulence in the K-1 model is either specified algebraically by empirical means 
for simple turbulent flows (e.g. unseparated turbulent boundary layers), or it can be 
obtained from a transport equation which is constructed from a modelled version of 
the contracted form of the evolution equation for the two-point double velocity 
correlations (cf. Mellor & Herring 1973). This transport equation for the lengthscale 
takes the form 

where P1, . . . , P4 are dimensionless constants. 
In  the K-e model, the lengthscale of turbulence is taken to be of the form 

iG 
1 = c--, 

E 

where 
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is the dissipation rate of the turbulence and C is a dimensionless constant. Here, the 
turbulent kinetic energy K and dissipation rate B are obtained from modelled versions 
of their transport equations which can take a variety of forms. In the Launder model 
(cf. Hanjalic & Launder 1972) these transport equations are, at  high Reynolds 
numbers, as follows : 

where C,, . . . , C, are dimensionless constants. 
As a result of the simplicity of its structure, the K-1 (or K-e) model does have 

certain advantages. Since it actually constitutes a tensorially invariant eddy- 
viscosity model (with eddy viscosity &Kil), it can easily 'be incorporated into any 
existing Navier-Stokes computer code which allows for a variable viscosity. It does 
extremely well in the analysis of thin turbulent shear flows since it reduces to the 
traditional eddy-viscosity models which were constructed for this purpose. Further- 
more, this model is frame-indifferent (i.e. is of the same form whether or not the frame 
of reference is inertial). Consequently, the principle of material frame-indifference in 
the limit of two-dimensional turbulence, which is a rigorous consequence of the Navier- 
Stokes equations (see Speziale 1981, 1983), is satisfied identically. 

Although the ease of application of the K-e and K-1 models (along with its accuracy 
in the calculation of thin turbulent shear flows) are very positive features, these 
models nevertheless yield inaccurate predictions for the normal Reynolds stresses. 
Consequently, flows where the normal Reynolds stresses play an important role (e.g. 
problems involving recirculation and secondary flows) cannot be calculated properly 
with the linear K-e or K-1 model. While this point has been briefly alluded to 
previously in the literature, it will now be demonstrated in more detail. To begin with, 
it is well known that the K-e and K-1 models predict that the normal Reynolds 
stresses in a fully developed turbulent channel flow (see figure 1) are all equal - a 
result which is in substantial contradiction of experiments. This erroneous equality 
of the normal Reynolds stresses is also predicted by the K-e and K-1 models when 
applied to the problem of fully developed turbulent flow in a non-circular duct (see 
figure 2). Since the K-e and K-1 models predict that 

(15) 7yy - 7 X X j  

they yield unidirectional mean turbulent flows in non-circular ducts which is in 
contradiction of experiments that demonstrate the presence of secondary flows as 
illustrated in figure 2. It has been proven that in order for secondary flows to occur, 
the axial mean velocity must give rise to a non-zero transverse normal-Reynolds- 
stress difference T~~-T~. (cf. Speziale 1982, 1984). 

In  addition to bemg incapable of describing secondary flows in non-circular ducts, 
the K-e and K-1 models given by (6) give rise to substantial inaccuracies in the 
calculation of separated turbulent flows. In particular, for turbulent flow over a 
backward-facing step (see figure 3), the K-e and K-1 models yield inaccurate values 
for the separation length L and for the normal Reynolds stresses. The reason for this 
difficulty becomes clear if one considers an arbitrary two-dimensional mean turbulent 
flow of the form 

- 

(16) 
- 
0 = U ( Z ,  y) i + Z ( Z ,  y ) j .  
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FIQURE 1. Fully developed turbulent channel flow. 

FTQURE 2. Fully developed turbulent flow in a rectangular duct. 

FIGURE 3. Turbulent separated flow over a backward-facing step. 
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For such a flow, the K-Z (or K-e) model defined by (6) predicts that 

for all choices of 'zi and V. Clearly, this is not true in general and can lead to significant 
errors in the calculation of the normal Reynolds stresses. These errors are not 
significant in the calculation of thin turbulent shear flows since, for such flows, the 

Tz2+7yy = 27,z (17) 
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normal Reynolds stresses do not enter into the calculation of the mean velocity. 
However, for a separated flow such as that shown in figure 3, the normal Reynolds 
stresses play an important role in the calculation of the mean velocity field through 
the terms Ck,,/ax and aryy/ay. 

It will be shown in the next section that these inaccuracies in the predictions for 
the normal Reynolds stresses can be alleviated by the addition of nonlinear terms 
of an invariant form. Hopefully, then it will become possible to analyse secondary 
flows and recirculating flows without the need for ad hoc empiricisms. 

3. Nonlinear K-1 and K-e models 
In order to develop nonlinear turbulence models which transcend the linear K-1 

and K+ models, but are not considerably more complex in structure, we shall restrict 
our attention to algebraic models that are quadratic in the mean velocity gradients 
-the next highest approximation to (6). However, it  should be noted that terms that 
are quadratic in VU are of the same dimensions as terms that are linear in D(VB)/Dt. 
Hence, for consistency, time derivatives of W must be included along with nonlinear 
terms in V8 (the same situation occurs in the kinetic theory of gases when asymptotic 
solutions to the Boltzmann equation are obtained; cf. Chapman & Cowling 1953). Of 
course, in order to keep the same general theoretical framework as in the linear K-e 
and K-Z models, T will be allowed to depend on K and 1 which will be obtained from 
separate transport equations. Thus, the following functional form is assumed for the 
Reynolds stress tensor : 

T = ~[n, T, K ,  1, p ] ,  

where, for dimensional consistency, a parametric dependence on the density p needs 
to be included. There are several powerful constraints that can be invoked in order 
to simplify the structure of the quadratic theory obtained from (18) and to guarantee 
consistency with certain general properties of the Navier-Stokes equations : 

(i) general coordinate and dimensional invariance ; 
(ii) realizability (i.e. positiveness of the turbulent kinetic energy,t see Lumley 

1978); 
(iii) material frame - indifference in the limit of two-dimensional turbulence (see 

Speziale 1981, 1983). 

Constraint (i) is satisfied identically by casting the model in tensor form and by 
making sure that all model constants are dimensionless (this latter condition 
guarantees similitude under the Reynolds number - a general property of all solutions 
of the Navier-Stokes equations). Constraint (ii) can be satisfied by taking 

715 = - @Kaij + D7gj (19) 

where D~ is a traceless tensor and the transport equation for the turbulent kinetic 
energy is formulated in such a way that K > 0 (cf. Lumley 1978 for the details of 
how this is achieved). The last constraint places the most powerful restrictions on 
the allowable form of (18). It arises as a rigorous consequence of the two-dimensional 

t This constitutes the same realizability, in the weak sense, that the linear K-e and K-1 models 
are only known to satisfy (full realizability requires each component of the energy, i.e. -r,,/p, 
- ryy/p,  - rzz/p,  to be positive for any possible flow). 
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Navier-Stokes equations which are approached by any turbulence in a rapidly 
rotating framework that is sufficiently far from solid boundaries (a direct result of 
the Taylor-Proudman theorem; see Speziale 1981, 1985). In mathematical terms, 
constraint (iii) requires that the closure relation (18) in a two-dimensional turbulence 
be form-invariant under a change of frame, i.e. (18) must be of the same form 

in all non-inertial frames of reference x* which can undergo arbitrary time-dependent 
rotations and translations relative to an inertial framing. Under a change of frame, 
the mean velocity gradients transform as 

V*B* = VB+dual 51, 

where dual P is the antisymmetric tensor formed from the angular velocity P of the 
non-inertial framing 88 follows : 

(21 1 

(dual P)tj = cgjk (22) 

given that Egjk is the permutation tensor. Hence, VB is a frame-dependent tensor which 
is non-zero in a two-dimensional turbulence. Of course, the turbulent kinetic energy 
K and the lengthscale of turbulence 1 are frame-indifferent scalars, i.e. they transform 

K* = K ,  I* = 1 (23 1 
under a change of frame (cf. Speziale 1983). Consequently, any polynomial approxi- 
mation to (18) must be constructed from the frame-indifferent parts of VV and 
D ( W ) / D t  in order to satisfy constraint (iii). These frame-indifferent parts of VB 
and D ( b ) / D t  are, respectively, 88 follows (cf. Speziale 1983): 

&S 

where & is the frame-indifferent Oldroyd derivative of 25. Under an arbitrary change 
of frame, 

25* = 25, (26) 

5*=& (27) 

and, thus, they are invariant. Hence, we must take 

7tj  = -W4,+,7,[mi K ,  1, PI, 
0 

where D ~ t b  = 0. Since is quadratic in the mean velocity gradients, it  is clear that 
the linear approximation to (28) is the standard K-1 model given by equation (6). 
Here, we are interested in the next higher approximation to (28) - namely the 
quadratic theory in the mean velocity gradients. This simple nonlinear representation 
for 7 takes the form 
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and we have made use of the fact that D ~ i t  = 0. Dimensional invariance (i.e. 
constraint (i)) requires that 

y1 = C D  pla, (31) 

= CEPE2, (32) 

where CD and CE are dimensionless constants. Equivalently, the lowest-order 
nonlinear K--E model takes the form 

- 
~ t j  = - @KS, +pKilDgj + CD pZ2(Dtm Dmj -$Dmn D,, 4,) 

+ c ~ p l ~ ( ~ ~ j - @ m , ~ g j ) ,  (33) 
I!3 

where 1 = c-. 

It should be noted, of course, that as a result of (26) and (27), these nonlinear K-Z and 
K-e models are of the same form in all frames of reference independent of whether 
or not they are inertial. Furthermore, (33) must be supplemented with transport 
equations for K and E that are of the same general form as (13) and (14). 

It is clear that this nonlinear K-I? (and K-e) model differs from its linear version 
by the addition of two terms which are quadratic in the mean velocity gradients. In 
the next section, it will be demonstrated that these nonlinear terms allow for the more 
accurate calculation of normal-Reynolds-stress effects. However, before presenting 
these results, it would be of value to briefly discuss how the proposed nonlinear K-Z 
and K-e models (33) compare with previous work. It should first be mentioned that 
the nonlinear terms in (29), when y1 and yz are constants, are analogous to the 
viscoelastic terms in the second-order Rivlin-Ericksen fluid which has been used in 
the analysis of dilute polymer solutions (cf. Truesdell & No11 1965). Rivlin (1957) 
recognized many of the similarities between the mean turbulent flow of a Newtonian 
fluid and the laminar flow of a viscoelastic fluid and actually suggested that a 
turbulent constitutive theory for the Reynolds stresses be constructed based on 
and A, -the second Rivlin-Ericksen tensor which is an alternate representation for 
&. Unfortunately, Rivlin never carried out these ideas. Several researchers have 
considered representations for the Reynolds stresses that are algebraically nonlinear 
in the mean velocity gradients in order to describe turbulent secondary flows in 
non-circular ducts (see Launder & Ying 1971 ; Gessner & Emery 1976; Gessner & Po 
1977; Rodi 1982). However, these models were not cast in an invariant Eorm (i.e. in 
order to obtain an algebraic form, several geometry-dependent assumptions such as 
the existence of fully developed flow had to be made) and therefore, could not be 
applied to a variety of different flow configurations without the need for ad hoc 
empiricisms. In an interesting paper, Lumley (1970) proposed a nonlinear constitutive 
equation for the Reynolds stress tensor which had a somewhat similar structure to 
(33). While this model was never fully tested, there are doubts as to whether it could 
be applied to strpng turbulent shear flows since it is in violation of the principle of 
material frame-indifference in the limit of two-dimensional turbulence (it contains 
terms in the antisymmetric part of VV). Such problems would be expected because 
of the equivalence of the effects of homogeneous antisymmetric shear and rigid-body 
rotations. The same criticism can be levelled against a rather interesting Reynolds- 
stress relaxation model proposed by Saffman (1977). Finally, and perhaps most 
importantly, it should be noted that the nonlinear K-I? (and K-e) model derived herein 

8 
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is a special case of a much more complex nonlinear eddy-viscosity model derived 
recently by Yoshizawa (1984) using Kraichnan’s DIA formalism. It is quite encour- 
aging that the additional nonlinear terms on the right-hand side of (33) can be 
obtained from the NavierStokes equations in a deductive manner. 

4. Application of the nonlinear model to turbulent channel and duct flows 
In  order to provide a preliminary test of the nonlinear K-l model, we shall consider 

the problem of fully developed turbulent channel flow. A viscous fluid undergoes a 
turbulent flow between two parallel planes of infinite extent under the action of a 
constant axial pressure gradient 

- -G 
aF -- 
ax (34) 

(see figure 1). The fully developed mean velocity field takes the form 

(35) 
- u = U(y) i, 

and the Reynolds stress tensor has the structure 

(36) 

The Reynolds equation (2) yields the primary constraint on the flow 

Equation (37) is obtained from the z-component of (2) after substituting (34)-(36) 
and neglecting the effect of body forces. Here, the Reynolds shear stress 72y in the 
nonlinear K-l model (33) takes the form 

which is obtained by substituting (35) into (33). The transport equations for K and 
1 take the form 

(39) 

respectively, which must be solved along with (37) and (38) subject to the appropriate 
boundary conditions. This allows for the determination of U, K ,  1 and 7,y. 

It should be noted that (38)-(40) are identical with those obtained from the linear 
K-1 model. This is an acceptable state of affairs since the linear K-1 model yields good 
results for the mean velocity, Reynolds shear stress, and turbulent kinetic energy 
(sufficiently far from the walls) in a turbulent channel flow. The problem with the 
linear K-Z (and K-e) model is in its inability to accurately predict the individual 
normal Reynolds stresses 72x, 7yy and 722. It will now be shown that the nonlinear 
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FIQURE 4. Experimental results of Laufer (1961) for fully developed turbulent channel flow. 
Re = 30800. 

K-2 model alleviates this problem. For turbulent channel flow, the nonlinear K-Z 
model (33) yields the following expressions for the normal Reynolds stresses: 

and, hence, 7,. + ryy += r,, - a result which is consistent with experimental observa- 
tions. In contrast to this result, the linear K-Z (and K-e)  model yields the physically 
incorrect expression 

(4) 
As stated earlier, both the linear and nonlinear K-Z models yield the same 

predictions for the turbulent kinetic energy K, lengthscale 1, and mean velocity 
in turbulent channel flow (and the transport equations (39)-(40) have been demon- 
strated to yield accurate predictions for these quantities in the interior of the channel). 
Consequently, a fair basis of comparison is established between the nonlinear and 
linear model if the values of K ,  1 and dE/dy are taken from experimental data and 
then used to calculate the individual normal Reynolds stresses using (41)-(43) and 
(44). The experimental data of Laufer (1951) will be used for this purpose. It is true 
that the experimental data of Hussain & Reynolds (1975) is generally more accurate. 
However, sufficiently far from the channel walls, the difference is not really that 
substantial and the data of Laufer (1951) is somewhat easier to make use of. The 
Reynolds shear stress and mean velocity obtained experimentally by Laufer are 
shown in figure 4 for a Reynolds number Re = 30800 where U, is the centreline mean 
velocity and the dimensionless variable 7 is defined by (see figure 1) 

T,, = ryY = T,, = -$K. 

7 =  1-Y 
h' (45) 
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FIQURE 5. Normal Reynolds stress in turbulent charnel flow: comparison of theory and experiments 
for Re = 30800. (a)  T=%; (b) T ~ ~ ;  (c) T ~ ~ :  -, experimental (Laufer 1951); 0, nonlinear theory; 
_---- , linear theory. 
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In  order to avoid complicating this figure, the turbulent kinetic energy obtained 
experimentally by Laufer is not shown (rather, the experimental values of ($K/u2,)1, 
which are equivalent to the dimensionless r.m.8. values of T,,, rYY and T,, predicted 
by the linear K-1 model for this turbulent kinetic energy, will be shown in figure 
~ ( u - c ) ) .  The lengthscale of the turbulence can be obtained from rZY, K and U using 
(38), i.e. 

Of course, the empirical constants C, and CE must be evaluated before the individual 
normal Reynolds stresses can be computed. From (41)-(43) it  is clear that the first 
normal-Reynolds-stress difference rZ, - rYu only contains the constant C, and the 
second normal-Reynolds-stress difference rYY - T,, only contains the constant C,. By 
making use of just one data point for these normal-Reynolds-stress differences from 
the experimental data of Laufer (1951) (the point r] = 0.5 in the interior of the channel 
was considered), the constants C, and C, can be evaluated. These calculations yield 
the results 

C D  A C E  A 1.68, (47 1 
and, hence, there is only one additional independent constant present in this 
nonlinear model. Now, the individual normal Reynolds stresses can be calculated, 
for both the linear and nonlinear model, corresponding to the case of Re = 30800 
discussed above. Here, the same experimental values of K, 1 and @obtained by Laufer 
(1951) are used in the calculation of the normal Reynolds stresses for both the 
nonlinear and the linear K-1 models. These calculations, which are shown in figure 
5 (u-c), clearly demonstrate that the nonlinear K-1 model yields much more accurate 
results for the normal Reynolds stresses than those predicted by the linear model. 
In  fact, outside the near-wall region (i.e. for r] > 0.1) the results for the nonlinear 
model are in almost perfect agreement with the experimental data (of course, as a 
result of its underlying assumptions, a K-Z or K-e model would not be expected to 
be valid in close proximity to a solid boundary). These results are quite encouraging 
since they were obtained by the addition of only one independent empirical constant 
to what appears in the linear K-1 or K-e models. 

It will now be demonstrated that the nonlinear K-1 and K-e models, unlike the 
linear models, give rise to secondary flows in non-circular ducts - a physical effect 
that has been observed experimentally (cf. Gessner & Jones 1965). The necessary 
condition that closure models for the Reynolds stress tensor need to satisfy in order 
for such secondary flows to occur is as follows (see Speziale 1984): the axial mean 
velocity must give rise to a non-zero transverse normal-Reynolds-stress difference 
7yY-7,,. In the linear K-Z and K-e models, the axial mean velocity V ,  (see figure 2) 
gives rise to the transverse normal-Reynolds-stress difference 

TYY -T,, = 0, (48) 

which is obtained by substituting the mean velocity field V = VZk into (6) and then 
differencing the yy- and m-components. Hence, the linear K-l and K-e models are 
in violation of the necessary condition for the development of secondary flows no 
matter what choice is made for K, 1, or B.  Consequently, all such linear models predict 
that there are unidirectional mean turbulent flows in non-circular ducts - a result 
which is in contradiction of experimental observations. 

It will soon be seen that the nonlinear K-Z model rectifies this problem. In the 
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nonlinear K-Z model, the axial mean velocity iiz gives rise to the transverse normal- 
Regnolds-stress difference 

which, in general, is non-zero and hence aatisfies the necessary condition for the 
development of secondary flows. Here, (49) is obtained by substituting = Vz k into 
(33) and then differencing the yy- and xx-components. Likewise, the axial mean 
velocity Bz gives rise to the Reynolds shear stresses 

Equations (49)-(52) represent good approximations for T ~ ~ - T , , ,  T , ~ ,  T,, and ryZ 
since, for turbulent flow in a non-circular duct, the magnitude of the secondary flow 
is only approximately one percent of that of the axial flow (cf. Gessner & Jones 1965). 

The equations of motion for the determination of the turbulent secondary flow 
structure in a non-circular duct can be written as follows (cf. Speziale 1984) : 

where 

V*$ = Ts,, (55) 

(57) 

is the axial mean vorticity, is the secondary flow stream function, and Q is the 
constant axial pressure gradient which drives the flow. Of course, (53)-(56) must be 
solved subject to the no-slip boundary conditions 

(58) 

on the walls of the duct. These equations of motion are closed once the values of K 
and 1 are provided. 

A full solution of the equations of motion (53)-(56) coupled with the transport 
equations for K and 1 requires a rather substantial computational effort which, 
unfortunately, is beyond the scope of the present study. Hence, in order to simplify 
the problem, K and 1 will be provided empirically and it will be demonstrated 
computationally that these equations of motion yield a secondary flow consistent 
with experimental observations. The eddy viscosity 

- - o = o ,  $ = O ,  7 = 0  

eT = $Kit? (59) 
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FIaoRE 6. Fully developed secondary flow streamlines in a rectangular duct obtained using the 
nonlinear K-l model. 

in turbulent internal flows is known to decrease moderately with an increase in the 
effective mean shear rate sufficiently far from solid boundaries. A truncated 
power-law model given by 

ET = @Kilo, 8 < SO, (60) 

_ _  
where s = (D,Dd,)t (62) 
and KO and lo are, respectively, some constant reference turbulent kinetic energy and 
lengthscale (e.g. along the centreline of the duct where the mean velocity gradients 
vanish) can approximate this behaviour. The lengthscale 1 in the nonlinear terms in 
(33) will be approximated by 

since these terms are of higher-order ((63) constitutes the lowest-order approximation 
for 1). With these approximations, the equations of motion for turbulent duct flow 
at high Reynolds numbers will be essentially the same as those for a viscoelastic fluid 
characterized by a second-order Rivlin-Ericksen model with shear thinning (the 
qualitative similarities between such turbulent secondary flows and viscoelastic 
secondary flows have long been recognized ; see Rivlin 1957). For values of the cut-off 
shear rate So that are substantially less than its maximum value and for n < 0.5, the 
idealized power-law model (60)-(62) yields flat velocity profiles in channel flow that 
are qualitatively similar to figure 1 (cf. Schowalter 1978) and, hence, this substantially 
simplified model can simulate many of the important features of turbulent flows. 

Computations were conducted for this model in a square duct, at  extremely high 
Reynolds numbers, using a finite-difference code developed by Thangam & Speziale 
(1985) for the analysis of such non-Newtonian flows (this code can be made use of 
as a result of the analogy discussed above). The secondary flow structure obtained 
in these computations was relatively insensitive to the values of the constants KO, 
lo, So and n provided that So 4 S,,, and n < 0.5. A typical computer-generated 
contour map for the secondary flow streamlines is shown in figure 6. These 
computations demonstrated the existence of an eight-vortex secondary flow structure 

I = lo, (63) 
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FIQTJRE 7. Computed streamlines for turbulent flow over a backward-facing step: (a) for the 
linear K-e model; LIAH = 5.2; (a) for the nonlinear K-e model: L/AH = 6.7. 

(where momentum is transported towards the corners of the duct) consistent with 
experimental observations aa shown in figure 2. While a detailed computation of the 
turbulence structure in 8 rectangular duct predicted by the nonlinear K-2 model must 
await future research, these results are encouraging in that they demonstrate that 
this model gives rise to a secondary flow with the correct structure. This is in stark 
contrast to the linear K-1 model which erroneously predicts that there are no 
secondary flows in non-circular ducts. 

Finally, it will be demonstrated that the nonlinear K-e model yields considerably 
improved predictions for separated turbulent flows. It is well known that the linear 
K-e model badly underpredicts the reattachment point for turbulent flow over a 
backward-facing step (see figure 3). To be specific, the linear K-e model predicts 
a separation length L/AH 5 (where AH = H a - H ,  is the step height), whereas 
experiments indicate that L / A H A  7 as discussed extensively at the 1980-81 
AFOSRHTTM Stanford Conference on Turbulence. Computations were conducted 
with the nonlinear K-e model derived herein by making use of the TEACH computer 
code as adapted for the backward-facing-step problem by Chen (1985). The computed 
streamlines obtained are shown in figure 7 for H J H ,  = 1.5 and an inlet Reynolds 
number of approximately 100OOO. It is clear that the linear K-e model yields a 
separation length of L / A H  A 5.2 (see figure 7 a )  where= the nonlinear K-e model 
yields a separation length of L / A H  = 6.7 (see figure 7 b ) ,  which is in much closer 
agreement with the experimentally observed value of 7 .  Since both of the computed 
results shown in figure 7 were obtained using the same transport equations for K and 
8 (which are of the form of (13)-( 14)), it would appear that the nonlinear model can 
yield improved predictions for separated turbulent flows. 
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5. Conclusion 
A nonlinear K-Z and K-e model has been developed which constitutes the next 

highest algebraic approximation (i.e. a quadratic extension of the linear models). This 
was accomplished by means of an expansion subject to the physical constraints of 
dimensional and tensorial invariance, realizability, and material frame-indifference 
in the limit of two-dimensional turbulence. The nonlinear model derived represents 
a simplified version of a more complex nonlinear eddy-viscosity model obtained by 
Yoshizawa (1984) using Kraichnan’s DIA formalism and has qualitative similarities 
to the Rivlin-Ericksen fluids of viscoelastic flow. Computations were presented 
which demonstrated that this nonlinear K-Z (and K-e) model, which introduces only 
one additional independent constant over that which is present in the linear model, 
yields more accurate predictions for the normal Reynolds stresses in turbulent 
channel flow. It was also demonstrated computationally that the nonlinear model 
yields secondary flows of the correct physical form in a square duct (whereas the linear 
model is fundamentally incapable of doing so) and yields more accurate predictions 
for separated turbulent flows past a backward-facing step. 

Future research is needed to provide a more detailed picture of the turbulence 
structure in non-circular ducts predicted by this nonlinear K-Z and K-e model. In 
addition, a more detailed quantitative study of the model in a developing turbulent 
flow with separation should be considered. Some modifications in the transport 
equations for the turbulent kinetic energy and lengthscale may also be needed and 
more severe tests of the model should provide useful information in this regard. These 
more extensive tests of the nonlinear model will be the subject of a future study. 
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